Gaussian and mean curvatures of rational Bézier patches

نویسندگان

  • Jianmin Zheng
  • Thomas W. Sederberg
چکیده

This note derives formulae for Gaussian and mean curvatures for tensor-product and triangular rational Bézier patches in terms of the respective control meshes. These formulae provide more geometric intuition than the generic formulae from differential geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

Subdivision Algorithms and Convexity Analysis for Rational Bézier Triangular Patches

Triangular surfaces are important because in areas where the geometry is not similar to rectangular domain, the rectangular surface patch will collapse into a triangular patch. In such a case, one boundary edge may collapse into a boundary vertex of the patch, giving rise to geometric dissimilarities (e.g. shape parameters, Gaussian curvature distribution, cross boundary continuities etc.) and ...

متن کامل

Construction of Bézier surface patches with Bézier curves as geodesic boundaries

Given four polynomial or rational Bézier curves defining a curvilinear rectangle, we consider the problem of constructing polynomial or rational tensor–product Bézier patches bounded by these curves, such that they are geodesics of the constructed surface. The existence conditions and interpolation scheme, developed in a general context in earlier studies, are adapted herein to ensure that the ...

متن کامل

Rational Bézier Formulas with Quaternion and Clifford Algebra Weights

We consider Bézier-like formulas with weights in quaternion and geometric (Clifford) algebra for parametrizing rational curves and surfaces. The simplest non-trivial quaternionic case of bilinear formulas for surface patches is studied in detail. Such formulas reproduce well known biquadratic parametrizations of principal Dupin cyclide patches, and are characterized in general as special Darbou...

متن کامل

Representation of Dupin cyclides using quaternions

Dupin cyclides are surfaces characterized by the property that all their curvature lines are circles or lines. Spheres, circular cylinders, cones and tori are particular examples. We introduce a bilinear rational Bézier-like formula with quaternion weights for parametrizing principal patches of Dupin cyclides. The proposed construction is not affine invariant but it is Möbius invariant, has low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2003